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Abstract

Two-dimensional unsteady airfoil theory has a history that dates back at least 75 years. Closed-form solutions have

been obtained for airfoil loads due to step response (either to a pitch input or to a gust), due to airfoil oscillations in the

frequency domain, and due to generalized airfoil motions in the Laplace domain. It has also been shown that the

response of airloads to airfoil motions can be formulated in state space in terms of ordinary differential equations that

approximate the airfoil and flow field response. The more recent of these models are hierarchical in that the states

represent inflow shape functions that form a convergent series in a Ritz–Galerkin sense. A comparison of the various

approaches with each other and with alternative computational approaches yields insight into both the methodologies

and the solutions.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

1.1. Background

Two-dimensional unsteady airfoil theory (in particular for incompressible flow) has an interesting history that spans

more than 75 years. The primary motivation of this work sprang from the practical interest in aeroelasticity and

especially in fixed-wing flutter. Although two-dimensional incompressible potential flow theory is certainly a great

simplification over the reality of airplane aerodynamics, it nevertheless gives reasonable answers to many questions of

aeroelasticity, as well as keen insight into the aerodynamic mechanisms of unsteady airfoil behavior. Furthermore, the

mathematics is tractable enough to allow powerful mathematical tools to contribute significantly to this insight.
1.2. Historical developments

Wagner (1925) published an expression for the indicial response of a two-dimensional, flat-plate airfoil in

incompressible potential flow. Theodorsen (1934) presented the lift and pitching moment for this type of airfoil under
e front matter r 2007 Elsevier Ltd. All rights reserved.
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Nomenclature

b blade semi-chord, m

bn expansion coefficients

c real part of s, constant for which all

singularities are to the left of c+ik

C(k) Theodorsen function

d damping coupling matrix

D(s) complex lift deficiency function

fn, gn potential functions

K0(s) Bessel function of order zero

K1(s) Bessel function of order one

k reduced frequency ob/V, Im [s]

L lift, nondimensional

L[ ] Laplace transform

Lb lift due to total bound circulation

LC circulatory lift definition of Theodorsen

(1934)

M mass matrix

M0 pitching moment about mid-chord,

nondimensional

M1/4 pitching moment about quarter chord,

nondimensional

PD lift per unit length, nondimensional

p pressure, N/m2

Q mass coupling matrix

S damping matrix

s Laplace transform variable in reduced time

t reduced time V(time)/b

u,u x and y velocity components, nondimensional

on V

ūðtÞ unit step function

ub part of u due to gb

uw part of u due to gw

V free-stream velocity, m/s

wn components of total velocity field

W(t) Wagner function

X change of variable, e�Z

x,y Cartesian coordinates nondimensional on b

b eigenvalue

g vorticity per unit length

gb bound vorticity

gw wake vorticity

G total bound circulation, nondimensional

Ĝ normalized circulation, G/2p
d(t) impulse function

l downwash due to gw ¼ �uw

ln coefficients of velocity due to shed wake

v downwash due to bound vorticity, ¼ �ub

vn components of velocity due to bound

vorticity

x dummy variable of integration

r density of air, kg/m3

t nondimensional time in Peters and

Karunamoorthy (1993, 1994), t �t

tn pressure expansion coefficients

f,Z elliptical coordinates

F nondimensional pressure, p/rV2

FA acceleration potential

Fn expansion functions for F
FV velocity gradient potential

C velocity potential

o frequency, rad/s

( )L lower surface, lim
y!0�
�1oxoþ 1

( )U upper surface, lim
y!0þ
�1oxoþ 1

ð
�
Þ q( )/qt
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simple harmonic motion. Part of this general solution is the theodorsen function, which is probably the best-known

analytical expression that relates the effect of the shed wake on airfoil lift in the frequency domain. Garrick (1938)

showed that the indicial response and Theodorsen function were related through a Fourier transform. R.T. Jones

developed a two-state approximation to lift theory (Jones, 1938) which could be used in either the time domain

(as an approximation to Wagner’s indicial response), in the frequency domain (as an approximation to the Theodorsen

function), in the differential equation domain (for time marching), or in the Laplace domain (for general airfoil motion)

(Jones, 1939). Sears (1940) applied this operational form to some interesting problems of practical interest. W.P. Jones

(1945) was the first to formulate an exact laplace domain version of the Theodorsen function. However, at that

time there was concern as to whether or not this function was truly valid for negative real arguments of s (Edwards

et al., 1989).

Later, renewed interest in two-dimensional aerodynamics centered around finite-state approximations to the Wagner,

Theodorsen, and Laplace solutions. Hassig (1971) used rational functions in the Laplace domain to approximate the

exact solutions. Vepa (1976) introduced the method of Padé approximants to give a finite-state representation of lift

force in the frequency domain, as did Dowell (1980). Edwards et al. (1978, 1979) attacked both the incompressible and

compressible airfoil behavior in two dimensions. They established the mathematical rigor of the Laplace domain

generalization of the Theodorsen function, D(s), and applied it numerically to problems of aeroelasticity.

It is interesting to note here that there is also a two-dimensional model of unsteady aerodynamics for rotary wings in

which the returning wake is treated by layers of vorticity below the airfoil in a two-dimensional plane. Loewy (1957)

used this concept to develop an analog to the Theodorsen function for rotary wings. Dinyavari and Friedmann (1984)

used Padé approximants for the Loewy function to obtain finite-state models of rotary-wing aerodynamics. Other
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rotary-wing researchers, in trying to accommodate the need for general motion theories in rotorcraft, have used the

Wagner function in a convolution integral (Beddoes, 1983), thus ignoring the returning wake.

1.3. Other finite-state models

In addition to finite-state models developed as Padé fits to exact frequency response curves, other work has concentrated

on the development of finite-state models from first principles. Peters and Karunamoorthy (1993, 1994) showed that a

Glauert expansion of inflow states could be used to derive a set of ordinary differential state equations in which the states

represented inflow distributions. The resultant equations give convergence to both Theodorsen andWagner functions. Peters

et al. (1995), also showed that a similar theory could be developed from an expansion of potential functions.

Peters and Johnson (1994) indicate that any of the two-dimensional theories (including the finite-state models) can be

thought of as a feedback system in which inflow due to shed wake is an open-loop transfer function. The result is that a

more easily applied theory can be utilized in which the inflow theory and airloads theory are modeled separately, so that

closing the loop is done numerically in the assembled equations. They, along with Barwey, then utilized this concept to

do correlations with several sets of experimental data (Peters et al., 1995).

1.4. Present work

In this paper, the theoretical bases of the various modeling approaches will be compared with some numerical results. These

comparisons give insight into the nature of two-dimensional unsteady aerodynamics. These methods are also compared in

principle to computational, finite-difference approaches to help to clarify the relationships among all approaches.
2. Basic equations

2.1. Fluid mechanics

The basic nondimensional equations from which all incompressible two-dimensional inflow models are obtained are

continuity and momentum, as defined in the coordinates shown in Fig. 1, where lengths are nondimensional on semi-

chord, velocities on free-stream, and pressure on rV2. Nondimensional (reduced) time follows, giving

qu=qxþ qv=qy ¼ 0, (1)

qu=qtþ qu=qx ¼ �qF=qx; qu=qtþ qu=qx ¼ �qF=qyF. (2)
x

�
b

�
w

-1 +1

y

Fig. 1. Coordinate system.
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These, along with the boundary conditions at the airfoil form thin-airfoil theory. Next, it is advantageous to form a

velocity gradient potential FV and an acceleration potential FA.

qu=qx � �qFV=qx; qv=qx � �qFV=qy; qu=qt � �qFA=qx; qv=qt � �qFA=qy. (3)

It follows immediately from Eqs. (1) and (2) that

q2FA=qx2 þ q2FA=qy2 ¼ 0; q2FV=qx2 þ q2FV=qy2 ¼ 0; FA þ FV � F. (4)

Thus, the pressure F must also be a potential function.

2.2. Relationships between potentials

From the above derivation, one can derive relationships between the velocity fields and the potentials:

u ¼ �

Z x

�1

FV

qx
dx ¼ �FV ; u ¼ �

Z x

�1

qFV

qy
dx, (5)

FV ¼

Z t

�1

qFA

qx
dt; FA ¼

Z x

�1

qFV

qt
dx, (6)

F ¼ FA þ
q
qx

Z t

�1

FAdt; F ¼ FV þ
q
qt

Z x

�1

FV dx, (7)

qFA=qtþ qFA=qx ¼ qF=qt; qFV=qtþ qFV=qx ¼ qF=qx. (8)

The above relationships are useful in both the closed-form and the finite-state developments.

2.3. Vorticity and pressure

As a final piece of the mathematics, we define the nondimensional vorticity distribution, g, and the lift per unit

length PD:

g � FV
L � FV

U ; PD � FL � FU ; PD � g � FA
L � FA

U , (9)

where ( )L and ( )U imply the upper and lower surface of the airfoil strip. It follows that

PD ¼ gþ q=qt

Z x

�1

gdx: (10)

For clarity of the development, the vorticity distribution on the airfoil (�1pxp+1) is called gb, whereas the

downstream vorticity in the wake (x41) is called gw. It is clear from the physics that g ¼ 0 for y ¼ 0, upstream (xo�1).
Thus, PD can be written in terms of gw and G as follows:

xo� 1 : PD ¼ g ¼ 0, (11a)

�1oxoþ 1 : PD ¼ gb þ q=qt

Z x

�1

gb dx, (11b)

x41 : PD ¼ 0 ¼ _Gþ gw þ q=qt

Z x

þ1

gw dx, (11c)

where G is the total bound circulation on the airfoil,

G �
Z þ1
�1

gbdx. (12)
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2.4. Vorticity transport and induced flow

From this follows immediately the vorticity transport relations

qPD

qx
¼

qgb

qx
þ

qgb

qt
; �1oxoþ 1,

0 ¼
qgw

qx
þ
qgw

qt
; x4þ 1,

gwðx; tÞ ¼ �
qG
qt
ðt� xþ 1Þ. ð13Þ

where the last line is the solution to the ordinary differential equation in the second line with boundary condition from

Eq. (11). Thus, the time rate of change of total bound circulation results in shed vorticity that enters the wake and is

transported downstream at nondimensional velocity equal to unity.

The induced velocity from either bound or wake vorticity can be found from the Biot–Savart Law, applied to g and
broken up into gb and gw, namely.

u ¼ �
1

2p

Z 1
�1

g
x� x

dx, (14)

�ub ¼ þ
1

2p

Z þ1
�1

gb

x� x
dx � n, (15)

�uw ¼ þ
1

2p

Z 1
þ1

gw

x� x
dx � l. (16)

From the second line of Eq. (13) and the fact that, at every time step, a new piece of gw is shed into the wake, it

follows that

ql
qt
þ

ql
qx
¼

1

2p
qG=qt

1� x
, (17)

where v and l are downwash due to bound and wake vorticity, respectively. Eqs. (1)–(17) complete the set of equations

from potential flow theory that must be solved to form a thin-airfoil theory.
3. Thin airfoil theory as a feedback loop

3.1. Feedback loops

We are now in a position to view thin airfoil theory as a feedback system. Fig. 2 shows a block diagram that depicts

the process. The input for thin airfoil theory is the nonpenetration boundary condition. Thus, the flow normal to the

airfoil surface, w, must be countered by induced flow, (w ¼ v+l). It is assumed that the geometry, w, is specified. The

induced flow due to bound vorticity (v ¼ w�l), once known, immediately gives the bound vorticity, gb through Eq. (15).

Since this is not a differential equation, there is a straightforward linear, quasisteady mapping into gb. The bound

circulation can then be fed back through Eq. (12) to obtain the total bound circulation (another quasisteady mapping);

and G drives the differential equation, Eq. (17), to give the induced flow due to the wake, l, which becomes the feedback

mechanism. The closed-loop gb is taken through Eq. (11b) to give directly the desired air loads, PD.
+
-

w

Eq. (15) Eq. (11b) PD

Eq. (12)Eq. (17)

�
bv

�

Γ

Fig. 2. Thin airfoil theory as a feedback loop.
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PD �b

Eq. (15)

Eq. (12) Eq. (17)

w+

+

v

Γ �

Eq. (11b)

Fig. 3. Actuator strip theory.
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Thin airfoil theory has historically concentrated on the solution to this closed-loop problem PD/w. However, it is very

useful to treat the forward and backward loops separately as two distinct theories. The backward loop is the induced-

flow theory. That is, given the bound circulation (i.e., the strip loading) what is the induced flow due to the wake? The

forward loop, Eq. (15), can be thought of as a lift theory. Given the distribution of angle of attack (w�l), what will be
the lift (i.e., bound circulation)? The Kutta condition comes into Eq. (11b) in that the system is only invertible if a

constraint is placed on the loads, PD. One of the side benefits of this type of formulation is that various stall models can

be inserted in lieu of Eq. (15). Thus, this approach allows stall theories to be included without disturbing the inflow

theory. The approach to be taken here is to develop a model that relates the bound vorticity (or, equivalently, the airfoil

pressure distribution) to the induced flow due to the shed wake.

Fig. 3 shows a reconfiguration of the feedback loop in Fig. 2 that gives a typical actuator-strip theory, analogous to

actuator disk theory for rotorcraft. The actuator strip theory gives a relationship for w/PD (pressure in, velocity out).

However, it is straightforward to see how v could be subtracted from w to obtain l, if desired. Thus, one should also be

able to obtain the Theodorsen function from merely the lower branch of Fig. 3 (as from the lower branch of the

feedback loop of Fig. 2) with the appropriate closed-loop modification.

3.2. Glauert expansions

To turn the various partial differential equations into ordinary differential equations in time, it is necessary to expand

the various airfoil quantities into Glauert expansions. These Glauert expansions are used in Classical Airfoil Theory

(such as Theodorsen’s) as well as in the finite-state vortex and potential models. The expansion functions are complete

on the airfoil, and are derived from potential functions in elliptical coordinates. It is the elliptical coordinates that allow

the discontinuity across the airfoil strip.

The transformation to elliptical coordinates is as follows:

x ¼ cos j cos Z; y ¼ sin j sin Z. (18)

Thus, for the upper airfoil surface, Z ¼ 0 and 0ojop. The following are the basic expansions:

PD ¼ 2
ts

sin j
�

ta cos j
sin j

þ
X1
n¼1

tn sinðnjÞ

" #
; gb ¼ 2

gs

sin j
�

ga cos j
sin j

þ
X1
n¼1

gn sinðnjÞ

" #
, (19)

n ¼
X1
n¼0

nn cosðnjÞ; l ¼
X1
n¼0

ln cosðnjÞ; w ¼
X1
n¼0

wn cosðnjÞ: (20)

With these expansions substituted into the operational equations, the partial differential equations and Biot–Savart

integrals become ordinary differential equations and matrix transforms through the balancing of Glauert coefficients.

Thus, Eq. (11b) is transformed to

gs ¼ ts; ga ¼ ta,

_ga �
1

2
_g2

� �
þ g1 ¼ t1 � _G

�
p,

1

2n
ð_gn�1 � _gnþ1Þ þ gn ¼ tn � _G

�
np; n ¼ 2; 3; 4; :::. ð21Þ
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which is a set of ordinary differential equations Eq. (12) becomes

G ¼ 2p gs þ
1

2
g1

� �
¼ 2p ðw0 � l0Þ þ

1

2
ðw1 � l1Þ

� �
(22)

and Eq. (15) becomes

n0 ¼ ga; nn ¼ gn; n ¼ 1; 2; 3:::. (23)

Thus, these are simply constant transforms with no derivatives Eq. (17) becomes:

_l0 �
1

2
_l2 þ l1 ¼ _G=p;

1

2n
ð_ln�1 �

_lnþ1Þ þ ln ¼ _G=np; n ¼ 2; 3; 4 . . . . (24)

3.3. Pressure–velocity expressions

It is interesting that the sum of Eqs. (21) and (24) can be used to give an expression for w in terms of t:

w0 ¼ ta þ l0; _w0 �
1

2
_w2

� �
þ w1 ¼ t1;

1

2n
_wn�1 � _wnþ1ð Þ þ wn ¼ tn; n ¼ 2; 3; 4 . . . (25)

Thus, the only added information that is necessary to turn airfoil motion into airfoil loads is l0, the weighted average of

inflow,

l0 ¼
1

p

Z p

0

ldj; ln ¼
2

p

Z p

0

l cosðnjÞdj. (26)

From Eq. (24), one can see that l0 is coupled to the other ln and is driven by _G, the time rate of change of total bound

circulation.

To satisfy the Kutta condition for a thin-airfoil theory, it is required that ts�ta, which leads to gs�ga. For an

actuator-strip theory (making the analogy to a rotor) the Kutta condition is replaced by ts�ta ¼ 0, which gives no

singularities in the pressure distribution. In fact, the pressure then becomes zero at the edges of the actuator strip. As

stated earlier, either formulation can be used for the Theodorsen and Wagner functions.
4. Development of closed-form expressions

4.1. Lift expressions

The fluid dynamics and mathematics are now in place to develop closed-form expressions for the transfer functions in

the Laplace domain, the transfer functions in the Fourier domain, and the step response in the time domain. To begin,

we look at the most commonly used form, the frequency domain. In that formulation, the Theodorsen function is

defined as the ratio of ‘‘circulatory lift’’ to ‘‘circulatory lift in the absence of the effect of wake-induced velocity.’’ An

important point here, however, is that the term ‘‘circulatory lift’’ has no absolute definition based on physics. One can

see that all of the airloads (PD) are due to bound vorticity gb. Thus, all lift is, strictly speaking, ‘‘circulatory.’’ However,

some authors define ‘‘circulatory lift’’ as the lift due to total bound circulation, which would be the quasistatic part of

Eq. (11b) (Fung, 1995):

Lb ¼ G ¼
Z þ1
�1

gb dx ¼ 2p gs þ
1

2
g1

� �
. (27)

Under the Kutta condition, and with Eq. (24), this gives

Lb ¼ G ¼ 2p w0 þ
1

2
w1

� �
� l0 þ

1

2
l1

� �� �
. (28)

For a rigid airfoil, w0 þ
1
2
w1 is the angle of incidence at the three-quarter chord due to free stream. However, because the

higher ln terms have a three-quarter chord contribution as well, l0 þ 1
2
l1 is not precisely the angle of incidence at the

three-quarter chord due to induced flow.

Not all authors, however, have defined ‘‘circulatory lift’’ in this way (Bisplinghoff et al., 1955). To understand why, it

is instructive to write the unsteady lift in several forms from Eqs. (19), (21), (25) with the Kutta condition applied.

L=2p ¼ ta þ
1
2
t1, (29a)
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L=2p ¼ ga þ
1
2
g1 þ

1
2
_g0 �

1
4
_g2 þ _gs þ

1
2
_g1 _¼Ĝþ

_̂Gþ 1
2
_g0 �

1
4
_g2, (29b)

L=2p ¼ ðw0 þ
1
2
w1Þ � ðl0 þ 1

2
l1Þ þ 3

2
ð _w0 � _l0Þ þ 1

2
ð _w1 � _l1Þ � 1

4
ð _w2 � _l2Þ. (29c)

Now, Eq. (29c) represents the quasi-steady and unsteady parts of the lift, with the first two terms being the lift due to

total bound circulation, Eq. (22).

However, Eq. (24) can be used to write ln in terms of the other unsteady effects. The result in Eq. (29) is a cancellation

of terms, which yields a simpler form of that equation,

L
�
2p ¼ w0 þ

1
2
w1 � l0 þ 1

2
ð _w0 �

1
2
_w2Þ, (30)

which can also be obtained directly from Eq. (25). Thus, Eq. (30) is an alternate form of the total lift. It is because of the

simplicity of Eq. (30) as compared to Eq. (29) that most authors have elected to call w0 þ
1
2
w1 � l0 the ‘‘circulatory lift’’,

rather than the lift due to bound vorticity, w0 þ
1
2
w1 � l0 � 1

2
l1. The unsteady term from Eq. (30), 1

2
ð _w0 �

1
2
_w2Þ, is then

called the apparent mass lift.

4.2. Circulatory lift

As stated above, most authors (Theodorsen, 1934) define the part of Eq. (30) without dots as the ‘‘circulatory lift’’,

LC:

LC=2p � w0 þ
1
2
w1 � l0. (31)

This is done for convenience and economy of derivation. Of course, this implies that LC is not proportional to the

bound circulation and that it is not approximated by the angle of incidence of the three-quarter chord.

Consequently, the Theodorsen function is defined as the ratio of LC/(LC+l0). Thus, if all quantities are in the

frequency domain, one can write

CðkÞ ¼
w0 þ

1
2
w1 � l0

w0 þ
1
2
w1

¼
Ĝþ 1

2
l1

Ĝþ l0 þ 1
2l1

. (32)

The same transfer function holds if these are in the Laplace domain. In that case, we call the function D(s), which

implies that D(ik) ¼ C(k). The Wagner function is defined as the response due to a step change in (w0 þ
1
2
w1), thus

implying that the Wagner function is

wðtÞ ¼ 1� l0ðtÞ, (33)

where l0 is the induced flow due to that step.

It is interesting to note how the transfer functions described above are closed-loop responses that can easily be

formed from the open-loop responses l0=Ĝ and l1=Ĝ. These open-loop responses represent the major transfer function

in the feedback path of Fig. 2. It is easy to see from Eq. (32) that, once these open-loop responses are known (either in

the time or frequency domain), C(k) or D(s) is immediately determined. The open-loop response of velocity due

to bound vorticity is independent of boundary conditions or Kutta condition. It is simply the response of

induced velocity to shed vorticity. Thus, the Theodorsen and Wagner functions are not, in themselves, dependent on the

Kutta condition.

4.3. Derivation in frequency domain

Perhaps the most straightforward way to derive the Theodorsen function is to follow the approach of Sears (1940)

and look at the induced flow due to a step input in Ĝ. A step in Ĝ will give a single, concentrated vortex shed from the

trailing edge of the airfoil at velocity of unity. The resultant induced flow distribution on the airfoil follows immediately

from the Biot–Savart law:

lðx; tÞ ¼
1

tþ 1� x
; x41. (34)

The important induced-flow components on the airfoil, l0 (uniform) and l1 (gradient), come immediately from the

integrals in Eq. (26),

l0 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tð2þ tÞ
p ; l1 ¼

2ðtþ 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tð2þ tÞ

p � 1. (35)
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The combinations formed in the Theodorsen function are

1þ 1
2
l1 ¼

tþ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tð2þ tÞ

p ; 1þ l0 þ 1
2
l1 ¼

ffiffiffiffiffiffiffiffiffiffi
2þ t

t

r
. (36)

It is perhaps easiest now to move to the Laplace domain. We take the Laplace transform of the step response,

L l0½ � ¼ esK0ðsÞ; L 1þ 1
2
l1

� 	
¼ esK1ðsÞ. (37)

This, multiplied by s, gives the impulse response. Immediately, we have the complex version of the Theodorsen function

from Eq. (32):

DðsÞ ¼
esK1ðsÞ

esK0ðsÞ þ esK1ðsÞ
¼

K1ðsÞ

K0ðsÞ þK1ðsÞ
, (38)

where we have used the fact that the transfer function is the Laplace transform of the impulse response, which is the

Laplace transform of the step response multiplied by s. The Theodorsen function follows immediately as

CðkÞ ¼
K1ðikÞ

K0ðikÞ þK1ðikÞ
�

J1 � iY1

J1 � iY1 þ iðJ0 � iY0Þ
. (39)

4.4. Time domain

Next, we come to the step response of lift due to w0 þ
1
2
w1, which gives us the Wagner function. Once again, we use

the fact that the step response is the impulse response divided by s. Thus, we have

W ðtÞ ¼
1

2pi

Z cþi1

c�i1

DðsÞ

s
estds; (40)

where D(s) is given by Eq. (38). Eq. (40) is, in itself, the correct form of the Wagner function, W(t). On the other hand, it

is usually more convenient to put it into Fourier transform form. A problem with this, however, is that the integrand of

Eq. (40) has a pole on the imaginary axis at s ¼ 0. This is because

Dð0Þ ¼ 1; DðikÞ ¼ CðkÞ; Cð0Þ ¼ 1; Cð1Þ ¼ 1
2
. (41)

Thus, D(s)/s is infinite at s ¼ 0. Therefore, before changing to a Fourier transform, the pole must be removed:

W ðtÞ ¼
1

2pi

Z cþi1

c�i1

DðsÞ �Dð0Þ

s
est þ

Dð0Þ

s
est

� �
ds ¼ Dð0ÞūðtÞ þ

1

2pi

Z cþi1

c�i1

DðsÞ �Dð0Þ

s
est

� �
est ds. (42)

Now, the second term in the second line can accommodate c�0, converting it to a Fourier transform with s ¼ ik.

W ðtÞ ¼ ūðtÞ þ
1

2pi

Z þ1
�1

CðkÞ � 1

k
eikt dk ¼ ūðtÞ þ

1

p

Z 1
0

ReCðkÞ � 1

k

� �
sin ktdk

þ
1

p

Z 1
0

ImCðkÞ

k
cos kt dk: ð43Þ

The fact that W(t)�0 for negative t further implies that the two integrals in the second part of Eq. (43) must be equal.

Since
R1
0 ½ðsin kt=k� dk ¼ p=2 and since W(t)�0 for negative t, we can rewrite W(t) in several ways. Thus we have for

t40,

W ðtÞ ¼ 1þ
2

p

Z 1
0

ReCðkÞ � 1

k

� �
sinðktÞdk (44a)

¼
2

p

Z 1
0

ReCðkÞ

k
sinðktÞdk (44b)

¼
1

2
þ

2

p

Z 1
0

ReCðkÞ � 1
2

k

� �
sinðktÞdk (44c)

¼ 1þ
2

p

Z 1
0

ImCðkÞ

k
cosðktÞdk. (44d)
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For numerical work, Eq. (44a) is usually the best behaved, although Eq. (44c) is useful for small t, and Eq. (44d) is

useful for large t. The second line, Eq. (44b), although the most compact, is not numerically well conditioned.

Interestingly, the above development proves that W ð0Þ ¼ 1
2
based on Eq. (44c). In particular, this is true because

C(k)-1
2 as k-N, and the integral limit as t-0 has no contribution even under the infinite domain for which k is

integrated. In a similar manner, either line of Eq. (44) can be used to show that W(N) ¼ 0.

5. Finite-state models

5.1. Basis

Many finite-state models of unsteady aerodynamics are based on a fit of either the Theodorsen function (in the

frequency domain) or of the Wagner function (in the time domain). Here we consider finite-state models from first

principles based on the fluid dynamic equations shown earlier in this paper. In one sense, there can be no formal closed-

form finite-state model since the Bessel functions K0(s) and K1(s) yield no poles in the domain, but a branch cut.

However, a branch cut can be approximated by a distribution of poles. Thus, an approximate finite-state model is

possible. On the other hand, since the location of the branch cut is rather arbitrary in the s-domain, it follows that there

will be no single, unique finite-state model; and each possible model will have different convergence properties.

The lack of a true finite-state model can be seen from two aspects of the Theodorsen function C(k) at small k. In

particular, at small k the Re[C(k)] is approximated by 1�pk/2. Thus dRe[C]/dk 6¼0 at k ¼ 0. Now, any finite-state model

will, necessarily, have dRe[C]/dk�0 at k ¼ 0. Thus, there is always a ‘‘boundary layer’’ in k for which the behavior of

Re[C(k)] is not properly modeled. However, as will be seen in the results to follow, this boundary layer decreases in

width as the number of states is increased.

A similar phenomenon occurs in the Im[C(k)] which behaves as �k ln(k) for small k. Thus d[ImC]/dk ¼ �N at k ¼ 0.

No finite-state model can have an infinite slope of the imaginary part of the transfer function. However, as more states

are added, this slope will become larger and larger in the model. A similar trend can be seen in the Wagner function.

There, as seen in Eq. (34), the decay of W(t) for large t must be of the form 1/t. However, finite-state models will always

decay as e�bt, never as 1/t. Once again though, as more states are added, the finite-state model will approximate 1/t to

greater and greater accuracy.

5.2. Vortex-based models

This brings us to the first class of finite-state models, the vortex-based approach (Peters and Karunamoorthy, 1993,

1994). This approach takes the ordinary differential equations developed earlier in this report and applies them directly

with the ln as the states. The states of the model are, therefore, the inflow distributions due to shed vorticity. The

appropriate equations include either Eqs. (24) and (25) or (equivalently) Eqs. (24) and (21), although the former is

preferred. One interesting aspect of this, however, is that this set of equations is not quite complete. One can notice from

Eq. (24) that there is no equation with a static l0 term. Thus, one more equation is needed to complete the set.

In Peters and Karunamoorthy (1993, 1994), it is shown that the extra equation can be obtained based on Eqs. (14)

and (26). In particular, the extra equation is based on the observation of Sears (1940) that, for finite time, the wake does

not go to infinity. It only extends to x ¼ t. This means that x ¼N can be excluded from the domain. To show how this

allows another equation, let X�e�Z in elliptical coordinates. It is shown in Johnson (1980) that ln can be written as an

integral from 0 to infinity that involves Xn. However, the integral for l0 is undefined because X0 does not decay. On the

other hand, if we note that the wake does not extend to infinity, we can approximate X0 by a series in Xn over

0oXp1(NoZp0). At the trailing edge (x ¼ 1, Z ¼ 0), we have X ¼ 1. In the far wake (x-N, Z-N), we have X ¼ 0.

Thus, if one can fit 1 by a polynomial in Xn (0oXp1), then one can express l0 in terms of the ln for finite time (Peters

and Karunamoorthy, 1993, 1994). Thus, if

1 �
XN

n¼1

bnX n; 0oXp1, (45)

then

l0 �
1

2

XN

n¼1

bnln. (46)

Eq. (46) thus becomes the extra equation that completes the set of Eq. (24).
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There are an infinite number of ways to choose the bn based on how the fit is to be weighted. (Obviously, the point

X ¼ 0 is always weighted to be zero.) It turns out that, if the fit in Eq. (45) is constrained to be exact at X ¼ 1, thenPN
n¼1bn ¼ 1. Peters et al. (1995) point out that this ensures that C(k) will approach 1

2
at k-N as the number of states is

increased. If, in addition,
PN

n¼1nbn ¼ 0 (implying that the slope of the fit is constrained to be zero at X ¼ 1, the trailing

edge), then C(k)�0.5 at k ¼N even for the finite-state model with truncated states.

Peters et al. (1995) offer two possible approximations for bn. One is the binomial approximation

bn ¼ ð�1Þ
n�1 N!

n!ðN � nÞ!
. (47)

This weights the near-airfoil more than it does the downstream and, thus, is more accurate at smaller reduced time. It

satisfies
P

bn ¼ 1 and
P

nbn ¼ 0. Another approach is a least-squares fit, and this gives a more uniform

approximation for large time.

bn ¼ ð�1Þ
n�1 ðN þ n� 1Þ!

ðN � n� 1Þ!

1

ðn!Þ2
; 1onoN � 1,

bN ¼ ð�1Þ
Nþ1. ð48Þ

Eq. (24), augmented with Eq. (46) then becomes a vorticity-based, finite-state model. The bN ¼ (�1)n+1 ensuresP
bn ¼ 1.

5.3. Galerkin-based models

A second approach to finite-state thin airfoil theory is to apply Galerkin’s method directly to the potential

flow equations, Eq. (2) (Peters and Nelson, 2000a, b; Nelson, 2001). This involves expansion of the velocity potential

FV, Eq. (5), in terms of potential functions Ca and Cb. We begin with the solutions to the Laplace’s equation in

elliptical coordinates, as given below,

f n �
1

n
e�nZ sinðnjÞ; gn �

1

n
e�nZ cosðnjÞ,

f 0 ¼ j; g0 ¼ Z� K. ð49Þ

where K ¼ Zmax, the maximum Z for which the wake is considered.

The velocity potentials are then expressed in terms of Ca
n and Cb

n where

Ca
n ¼

1

2
ð�gnþ1 þ gn�1Þ; Cb

n ¼
1

2
ðf nþ1 � f n�1Þ. (50)

These are placed into the momentum equation and dotted with the gradient of the test functions (f0 and g0, n ¼ 0) and

(nfn and ngn, n ¼ 1,y,n). The equations are then integrated over the upper-half plane (0ojop and 0oZoK) with use

of the Divergence Theorem to obtain the equations in a typical Galerkin fashion.

Interestingly, for two elements of the matrix, the integral out to K ¼ Zmax will approach infinity as K-N. Rather

than choosing some arbitrary K to limit these integrals, Nelson (2001) chooses the same bn expansion for unity as

is used in the vortex methods to limit these values. Thus, the integral of X�1 gives ln|X| ¼ �Z which gives for bn from

Eq. (47):

K ¼ lim
Z!1

p
2
Z ¼

p
2

XN

n¼1

bn

n
¼

p
2

XN

n¼1

1

n
. (51)

It can be demonstrated that, as N-N, this sum will approach infinity, as it ought. Thus, K is replaced by Eq. (51) in

the infinite integrals.

The final form of the equation is as follows:

C ¼
PN
n¼1

anc
a
n þ bnC

b
n

� 	
;

u ¼ qC=qx; u ¼ �qC=qy;

(52)

M QT

Q M

" #
_a
_b

( )
þ

ST �d

d ST

" #
a

b

( )
¼

d ST

S d

" #
t

0


 �
, (53)
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where the row subscripts are l ¼ 0,1,2,3,y, and the column subscripts are n ¼ 1,2,3,4,y. The tn are the pressure

expansion terms, Eq. (19).

The matrix elements become (l 6¼0) as below:

Mln ¼
4ln

4l2n2 � ðl2 þ n2 � 1Þ2
; l þ n even; Ml n ¼ 0; l þ n odd;

Ql n ¼ þ
p
4
; n ¼ l þ 1; Ql n ¼ �

p
4
; n ¼ l � 1; Ql n ¼ 0; nal � 1;

Sl n ¼
2l n

ðn2 � l2Þ
; l þ n odd; Sl n ¼ 0; l þ n even;

dl n ¼
lp
2
; l ¼ n; dl n ¼ 0 lan:

(54)

The following changes to Eq. (54) must be made for the case l ¼ 0. First, Mln and Sln must be divided by l and then l set

equal to zero. Second, Q01 ¼ �Q10 ¼
p
2

PN
n¼11=n, which approaches infinity as the number of states increases. Third,

M01 ¼ p2/4 rather than the zero that Eq. (54) would imply for l+n odd. The proof of these values is given in Nelson

(2001). With this, Eqs. (52) and (53) become a Galerkin-based finite-state model.

5.4. Applications

An interesting aspect of the finite-state models is their diversity of applications. Because they are in the form of

ordinary differential equations, they can be used in many modes. For example, the Laplace transform can be utilized to

obtain an approximation for D(s); or, s ¼ ik can be used to obtain the transfer function in the frequency domain. The

equations can be time-marched, or one can obtain an eigenvalue solution. Most importantly, the airloads equations can

be assembled into a larger, structural dynamic framework in which one can do either eigenvalue analysis or any other

types of analysis. Peters and Johnson (1994) and Peters et al. (1995) show how this formulation is easily coupled with an

unsteady free-stream or dynamic stall model in both fixed-wing and rotary-wing applications.

Finite difference models are also state-space models since the assembly of the difference equations gives a set of states

equal to the number of computational nodes. However, as compared to finite-state models, finite difference equations

result in a very large number of states. Further, the incompressibility condition is an unwieldy constraint that makes the

solution process very difficult. Thus, artificial compressibility is often introduced into finite difference solutions for

incompressible potential flow. Dowell (1996) discusses other ways to reduce the order of finite-difference models.
6. Results

6.1. Vortex-based model

It is informative to compare calculations from the finite-state models to closed-form results. Fig. 4 shows both the

Real and Imaginary parts of C(k) as well as the Wagner step function W(t) for the vortex-based finite-state model with

only four states. The exact Theodorsen and Wagner functions are also plotted (XCT). The exact Wagner function is

based on the integral in Eq. (44a). Two versions of the finite-state model are shown, one with the binomial expansion

(BNX) and one with the least-squares fit with constraint (AUG). Results are plotted versus k/(1+k) and t/(1+t) in
order to show the entire frequency and time scale range on a scale from zero to unity. (Note that t�t.) One can see

several points mentioned earlier in the paper. First, all finite-state results have zero slope at k ¼ 0 for ReC(k) and they

have a finite slope for ImC(k). The binomial weighting does better than augmented at low t (large k), but the least

squares does better overall. Fig. 5 shows the same results for eight states. One can see how both weighting methods are

now much closer to the exact solution, which corroborates the convergence to the exact solution. Table 1 shows error

two-norms over both the entire frequency and the entire time domain for |C(k)| and |W|, respectively, where the

integrals are taken over k/(1+k) and t/(1+t). The classical Jones result and some Padé approximants are also analyzed

for this same norm. For the Padé approximants, a Bode plot is fit to C(k) to give the best fit. One can see a uniform

convergence of the vortex-based method up until a point where ill conditioning implies greater numerical precision is

needed. This shows that the main obstacle to convergence of the finite-state model is the ill-conditioned nature of the

matrices as N becomes large. This is due to the nature of approximating a branch cut by poles. Nevertheless, the

convergence of all finite-state results with N ¼ 8 is good.
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Fig. 4. (a) Real part of C(k), 4 states; (b) imaginary part of C(k), 4 states; (c) Wagner function, W(t), 4 states.
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Fig. 5. (a) Real part of C(k), 8 states; (b) imaginary part of C(k), 8 states; (c) Wagner function, W(t), 8 states.
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6.2. Galerkin-based model

Next, we turn to the convergence of the Galerkin-based model of Nelson (2001). For comparison purposes, we treat

the airfoil as an actuator-strip and do not apply the Kutta condition. Rather, we apply a given pressure distribution tn

at a desired reduced frequency k. The normal component of induced flow along the y-axis is given in Figs. 6–8, which

are for k ¼ 0, 1 and 4, respectively. Both real (in-phase) and imaginary (out-of-phase) responses are shown. Also shown

on the plot are: (i) the ‘‘Exact’’ solution (which is obtained by a convolution integral) and (ii) a vortex-based result,

labeled ‘‘Ref. [18].’’ The vortex-based result only gives the flow on the disk (not off the disk). The Galerkin results have

28 states and the vortex-based results have eight states with the augmented bn.

Both Galerkin and vortex-based methods do quite well on the disk. The reason that the Galerkin-based approach

requires more states than the vortex model is that it yields more information than does the vortex method. The latter

gives only normal velocity for �1oxo+1, whereas the Galerkin gives all three components of velocity everywhere in

the upper half plane. The results in Figs. 6–8 as well as the more detailed results in Nelson (2001) show that the Galerkin

method converges slowly for the inflow in the wake (x41) because that inflow does not decay as x-N.

Although the above results do not include the Kutta condition, they are still quite applicable to computation of the

Theodorsen function. Fig. 9 gives the same error norm as defined in Table 1 for C(k) as computed by the Galerkin

method with 28 states. Up to a reduced frequency of about 3.0, the average error norm is about 5%, which is

comparable to the error of vortex models with four to eight states. This is because the Galerkin approach optimizes the

error of the entire flow field while the vortex-model concentrates only on one component of on-disk flow. For kX4.0,

the cost of trying to converge on the flow in the wake implies that errors of 15–30% occur on the average flow on the

airfoil. (This flow diminishes as k increases.) In other words, the mean flow l0 (which dominates C(k)) is decreasing with

k as the oscillatory flow in the wake increases with k, making C(k) less accurate in a Galerkin approach. However, as

Figs. 6–8 show, the total flow on the airfoil remains well approximated by the Galerkin method even at k ¼ 4.0.

It is the nature of finite-state methods that they can be designed for certain applications. Binomial weighting is

optimum for short time (large k), whereas the augmented method is better at large time (small k). The Galerkin method

is optimized for the total velocity field whereas vortex models are optimized for on-airfoil flow.
7. Summary and conclusions

Two-dimensional, incompressible unsteady airfoil theory is based on a set of fairly compact equations for

conservation of mass and momentum (i.e., the potential flow equations) that can be transformed into vorticity

equations. Glauert expansions of the terms in these equations are very useful in both the solution and the interpretation

of thin airfoil theory. With these expansions in hand, a simple step response for the velocity field due to a single, trailed

vortex leads immediately to the Laplace-form and frequency-form of the lift deficiency function (i.e., the Theodorsen
Table 1

Error norms

Methods Theodorsen (%) Wagner (%)

Curve-fit

Jones 2.3 1.8

Padé, N ¼ 2 2.1 3.8

Padé, N ¼ 3 1.2 3.4

Augmented

N ¼ 4 3.5 5.0

N ¼ 6 1.6 1.8

N ¼ 8 1.0 1.3

Binomial

N ¼ 4 10.5 18.3

N ¼ 8 5.6 10.1

N ¼ 16 2.8 5.0

N ¼ 30 1.3 –

N ¼ 50 0.7 –
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Fig. 6. Inflow at k ¼ 0. Fig. 7. Inflow at k ¼ 1.

Fig. 8. Inflow at k ¼ 4.

Fig. 9. Error norm between the Theodorsen function and the new formulation.
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function) and to the step response of an airfoil, the Wagner function. These forms are related to each other through

their Fourier transforms.

The same Glauert expansions can also yield finite-state inflow models, in which the induced flow is represented in

terms of a finite number of states that measure the strength of closed-form potential functions. Models can be developed



ARTICLE IN PRESS
D.A. Peters / Journal of Fluids and Structures 24 (2008) 295–312 311
either from the vorticity equations or from the potential flow equations. Because of the singular nature of the two-

dimensional problem, there are singularities that arise in both derivations; but these can be treated by noting that

the wake does not trail to infinity. As a result, the infinity can be approximated yielding convergent inflow models by

either approach.

Numerical results have shown that the finite-state results give good correlation with the more conventional,

frequency-domain versions. The advantages of the finite-state methodology, however, are clear:
(i)
 the inflow theory can be coupled with lift models other than the simple non-penetration boundary condition of

classical theories;
(ii)
 finite-state models are in a matrix form that allows them to be easily assembled together with structural models for

aeroelastic computations;
(iii)
 the finite-state models permit solutions in either the time domain, the frequency domain, or the Laplace domain for

arbitrary forcing functions and even for unsteady free-stream.
Thus, they can be applied to a much wider variety of problems than can classical approaches.
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Appendix A. Non-dimensional quantities

In the foregoing derivation, all velocities are made nondimensional on the free-stream velocity, all lengths are made

nondimensional on the semi-chord, and (it follows that) time is made nondimensional on the semi-chord divided by

free-stream velocity. All pressures are made nondimensional on the density of the fluid times the free-stream squared. It

follows that lift per unit span is made nondimensional on rbU2 and pitching moment on rb2U2.
Appendix B. Pitching moment

Although the above development focuses on the airfoil lift per unit length, the pitching moment follows directly. The

nondimensional pitching moment per unit length about mid-span, M0, is given by

M0

2p
¼ �

ta

2
þ

t2
4
. (55)

It follows that the nose-up pitching moment about the quarter-chord is given by

M3=4

2p
¼

1

4
ðw1 þ w2Þ þ

1

4
_w0 þ

1

16
_w1 �

1

8
_w2 �

1

16
_w3. (56)

This gives the Theodorsen moment. Interestingly, the moment about the quarter-chord is independent of l0 (as well as
being independent of all ln) and thus it is independent of the Theodorsen function.
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